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This paper presents an analytical approach to determining natural frequencies and mode
shapes of non-uniform #exural-shear plates with line translational spring and rotational
spring supports and line masses under action of axial forces. The governing di!erential
equation for vibration of a non-uniform #exural-shear plate under axial forces is established
"rst. It is shown that it is possible to separate a #exural-shear plate as two beams for free
vibration analysis, one is a #exural beam, and the other is a shear beam. The natural
frequency of the plate is equal to the square root of the square sum of the two natural
frequencies of the two beams, and the mode shape of the plate is the product of the
corresponding two mode shapes of the two beams. In this paper, power functions and
exponential functions are adopted for describing the distributions of mass and sti!ness along
the height of the plate as well as the axial forces acting on the plate. The exact solutions for
free vibrations of non-uniform #exural-shear plates for several cases that are important in
engineering practices are derived. A numerical example shows that the calculated results are
in good agreement with the experimental data and it is convenient to apply the proposed
method to free vibration analysis of elastically restrained #exural-shear plates with varying
cross-section.

( 2000 Academic Press
1. INTRODUCTION

Experimental results on structural dynamic behavior obtained by Wang [1], Li [2], He
et al. [3], Li et al. [4}6], Jeary [7] and others have shown that the #exural deformation is
usually dominant in the total deformation of tall buildings with shear-wall structures in
their horizontal vibrations. Li et al. [4] suggested that for certain cases these shear-wall
buildings can be simpli"ed as cantilever #exural beams or elastically restrained #exural
beams for free vibration analysis. An approach to determining free vibration of #exural
beams with variably distributed mass and sti!ness was proposed by Li et al. [5, 6].
However, if a shear-wall building has a narrow rectangular plane con"guration (narrow
building), e.g., B/¸(1

4
, where B and ¸ are width and length of the rectangular plane

respectively, the sti!ness of each #oor of the building may not be treated as in"nitely rigid
[8]. Hence, such a narrow building may not be simpli"ed as a cantilever #exural beam for
free vibration analysis. It was reported by Li et al. [8] that the whole deformation
characteristics of a narrow building with shear walls are similar to those of a #exural-shear
plate, i.e., the shear deformation in the longitudinal direction (the x-axis in Figure 1) is
dominant, and the #exural deformation in the y direction is dominant. This is due to the fact
that the #exural deformation of shear walls is dominant in the lateral deformation of such
0022-460X/00/310063#23 $35.00/0 ( 2000 Academic Press



64 Q. S. LI
a narrow building. On the other hand, the main connections of shear-wall structures in the
longitudinal direction (the x direction in Figure 1) are #oors, and shear deformation of each
#oor, in-plane of that #oor, is dominant. It is necessary to point out that the displacement
caused by shear deformation and #exural deformation are all in the z direction, i.e., the
displacement is a function of x, y and t. This analytical model of a #exural-shear plate is
adopted in this paper for free vibration analysis of narrow buildings with shear-wall
structures. In general, a tall building with shear-wall structures has variably distributed
mass and sti!ness along its height; thus, such a building is treated as a #exural-shear plate
with variably distributed mass and sti!ness for vibration analysis.

Exact solutions for free vibration of #exural plates or shear plates with variably
distributed mass and sti!ness have been obtained only for certain plate shapes and
boundary conditions. For example, Chopra [9] developed an analytical approach for the
free vibration of a simply supported #exural plate with one change in thickness. Guo et al.
[10] recently found the analytical solutions for the free vibration of a stepped, simply
supported #exural plate with uniform thickness and abrupt thickness changes. Wang [1]
derived the closed-form solutions for the free vibration of cantilever shear plates with
uniformly distributed mass and sti!ness. However, it is obvious that the distributions of
mass and sti!ness of most narrow buildings are actually not uniform, especially, along the
building height. The concept of shear orthotropic plates was developed and used by Beiner
and Librescu [11]. They have presented an analysis of weight minimization for rectangular
#at panels with "xed #utter speed. To simplify the problem, a structural model that
considers transverse shear deformation only and neglects the bending sti!ness of the plate
was adopted in their study. This has the e!ect of reducing the linear partial di!erential
equation for this problem from the fourth to the second order. Li et al. [8] found the
closed-form solutions for free vibration of non-uniform shear plates. It should be pointed
out that vibration analysis of #exural plates or shear plates and e!ect of shear deformation
on #exural plate vibration have been extensively studied in the past. The concept and
analytical model of the #exural-shear plates which are di!erent from those of #exural plates
or shear plates were recently proposed by Li et al. [12]. An exact approach for determining
natural frequencies and mode shapes of #exural-shear plates with uniformly distributed
mass and sti!ness was presented by them.

Apart from the several analytical methods for analyzing limited classes of plates, many
approximate and numerical methods have been developed. These include the Ritz method,
Figure 1. A #exural-shear plate.
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the "nite strip method (FSM) and the "nite element method (FEM). In general, the Ritz
method, can provide accurate solutions; however, it depends on the choice of global
admissible functions. Liew and his co-workers [13}18] have developed e$cient Ritz
algorithms for the free vibration of various non-uniform plates having arbitrary boundary
conditions. The "rst known study on the problem of free vibration of symmetric cross-ply
laminated plates with elastically restrained edges was conducted by Liew et al. [18] using
the Rayleigh}Ritz method. Recently, Cheung and Zhou [19] studied the free vibrations of
tapered rectangular plates with an arbitrary number of intermediate line supports in one or
two directions using the Ritz method. The FSM presented by Cheung [20] has been
developed and applied vibration analysis of various plates over the years. Cheung and
Kong [21] investigated the free vibration of line-supported rectangular plates by applying
the FSM method. Guo et al. [10] studied the free vibration analysis of a stepped #exural
plate by applying FEM and FSE. Compared with FEM, the main advantage of FSE is its
e$ciency, in particular for plates with regular geometry.

In this paper, an attempt is made to present an exact approach to determining free
vibrations of non-uniform #exural-shear plates with line translational spring and rotational
spring supports and line masses under the action of axial forces. In order to derive
closed-form solutions for the title problem, the functions for describing the distributions of
mass, sti!ness and axial forces are selected as suitable expressions, such as power functions
and exponential functions. All exact solutions derived are expressed in terms of Bessel
functions and trigonometric functions. It is shown through a numerical example that the
selected expressions are suitable for describing the distributions of mass, sti!ness and axial
forces for typical multi-story narrow buildings with shear-wall structures. The numerical
example also demonstrates that the calculated results are in good agreement with the
experimental data and it is convenient to apply the proposed method to free vibration
analysis of elastically restrained #exural-shear plates with varying cross-section.

A #exural-shear plate representing a narrow building with shear walls, in general, has
free}free edges in the longitudinal direction and clamped}free or spring}free edges in the
vertical direction. In order to extend practical applications of the methods proposed in this
paper, free vibrations of #exural-shear plates with various boundary conditions, including
classical and non-classical ones, are investigated.

The main purpose of this work is to present exact solutions and an e$cient
computational method for the free vibration analysis of elastically restrained #exural-shear
plates with varying cross-section. In the absence of the exact solutions, this problem may be
solved using approximated methods (e.g., the Ritz method) or numerical methods (e.g., the
"nite element method and the "nite strip method). However, the present exact solutions
could provide adequate insight into the physics of the problem and can be easily
implemented. The availability of the exact solutions will help in examining the accuracy of
the approximate or numerical solutions. Therefore, it is always desirable to obtain the exact
solutions to such problems.

2. THEORY

As discussed above, a #exural-shear plate is a special orthotropic plate which deforms in
one direction (y) by bending only, and in the other direction (x) by shear only.

In order to establish the governing di!erential equation for vibration of a non-uniform
#exural shear plate under the action of line axial forces (Figure 1), an in"nitesimal plate
element is cut from the plate. The size of the element is dx]dy. The dynamic loading acting
on the element is q(x, y, t)dx dy. The inertial force is (mN

xy
L2=/Lt2 dx dy) and the damping
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force is (!C
xy

L=/Lt), where mN
xy

,= (x, y, t) and C
xy

are the mass intensity (mass per unit
area), dynamic displacement in the z direction and viscous damping coe$cient at point
(x, y) respectively. The element shown in Figure 2 is rotated over an angle of 903. According
to d'Alembert principle, all forces acting on the element including the inertial force should
satisfy the equilibrium conditions. From + F

z
"0, we have

LQ
x

Lx
#

LQ
y

Ly
!C

xy

L=
Lt

!mN
xy

L2=

Lt2
"!q(x, y, t), (1)

where Q
x
and Q

y
are the transverse shear forces in the x and y directions respectively, given

by

Q
y
"!

L
Ly AKy

L2=

Ly2 B!N
y

L=
Ly

, (2)

Q
x
"K

x

L=
Lx

, (3)

where K
x
and K

y
are the sti!nesses in the x and y directions respectively, and N

y
is the axial

force in the y-axis.
By substituting equations (2) and (3) into equation (1), we obtain

L
Lx AKx

L=
Lx B!

L2

Ly2 AKy

L2=

Ly2 B!
L
Ly ANy

L=
Ly B!C

xy

L=
Lt

!mN
xy

L2=

Lt2
"!q(x, y, t). (4)

This is the governing di!erential equation for vibration of a #exural-shear plate considering
the e!ect of axial force in the y direction. Setting q (x, y, t)"0 one obtains the governing
di!erential equation for free vibration of the #exural-shear plate as follows:

L
Lx AKx

L=
Lx B!

L2

Ly2 AKy

L2=

Ly2 B!
L
Ly ANy

L=
Ly B!C

xy

L=
Lt

!mN
xy

L2=

Lt2
"0 (5)
Figure 2. An element of the plate.
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In order to solve equation (5) it is assumed that

=(x, y, t)"Z(x, y)exp(jt). (6)

Substituting equation (6) into equation (5) leads to

L
Lx AKx

LZ

LxB!
L2

Ly2 AKy

L2Z

Ly2 B!
L
Ly ANy

LZ

Ly B#mN
xy

u2Z"0. (7)

We assume that

C
xy
"2C

0
mN

xy
(8)

and set

u2"!j (2C
0
#j). (9)

Obviously, if we set C
0
"0, then equation (7) becomes the governing equation for

undamped free vibration of a #exural-shear plate, i.e., the governing di!erential equation of
the damped mode function has the same form with the undamped mode function. This
implies that the damped mode shape is the same as the corresponding undamped mode
shape under the condition given in equation (8).

Solving equation (9) for j gives

j"!C
0
$iu J1!m2, m"

C
0

u
, (10)

where m is the critical damping ratio.
As is well known, the real part of j is the damping coe$cient, and the imaginary part is

the damped circular natural frequency denoted as u
d
,

u
d
"k

d
u, k

d
"J1!m2 . (11)

In general, m is in the range from 0)01 to 0)02, 0)02 to 0)04 and 0)03 to 0)06 for steel structures,
reinforced concrete structures and brick masonry structures respectively. Even if m"0)06,
k
d
"0)9982, this means that the damped natural frequency is almost equal to the undamped

one.
It is necessary to point out that the damped mode function is the same as the

corresponding undamped mode function and the damped natural frequency is equal to the
corresponding undamped natural frequency multiplied by the coe$cient k

d
. All the

relationships presented above are obtained subjected to the condition that the viscous
damping coe$cient is proportional to the mass intensity.

In order to determine the undamped natural frequencies and mode shapes, the method of
separation of variables is adopted herein:

Z(x, y)"X (x)>(y). (12)

It is assumed that K
y
, K

z
, mN

xy
, N

y
are functions of y as

K
y
"K

1
f (y), K

x
"K

2
u(y), mN

xy
"mN u (y), N

y
"Nt(y), (13)
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i.e., it is assumed that K
x
is directly proportional to mN

xy
. Since the values of K

x
and mN

xy
are

mainly dependent on the dimensions and materials of building #oors, this assumption is
reasonable for many narrow buildings. Substituting equations (12) and (13) into equation (7)
one obtains

K
2

d2X(x)

dx2

X (x)
#mN u2"

d2

dy2 CK1
f (y)

d2>(y)

dy2 D#
d

dy CNt(y)
d> (y)

dy D
>(y)u (y)

. (14)

Since the left-hand side of this equation is a function of x, and it is not related to y, the
right-hand side is a function of y, and it is not related to x; thus, the entire equation is
satis"ed for arbitrary values of x and y only if both sides are equal to a constant. If it is
assumed that the constant is mN h2, then the following two independent ordinary di!erential
equations are obtained from equation (4):

K
2

d2X (x)

dx2
#mN X2X (x)"0, (15)

d2

dy2 CK1
f (y)

d2> (y)

dy2 D#
d

dy CNt(y)
d>(y)

dy D!mN u (y)h2> (y)"0, (16)

where

X2"u2!h2, u"Jh2#X2 . (17)

It is obvious that equations (15) and (16) are two governing equations of vibration mode
shapes of two beams. One is a shear beam in the x direction, K

2
, mN , X are the shear sti!ness,

mass intensity and circular natural frequency of this shear beam respectively; the boundary
conditions of the shear beam are the same as those of the #exural-shear plate in the
x direction. The other one is a #exural beam, K

1
f (y), mN u (y), Nt(y) and h are the #exural

sti!ness, mass intensity, axial force and circular natural frequency of this #exural beam
respectively, the boundary conditions of the #exural beam are the same as those of the
#exural-shear plate in the y direction. The natural frequency of the plate is equal to the
square sum of the two natural frequencies of the two beams. This suggests that free
vibration analysis for a #exural-shear plate can be carried out by analyzing free vibration of
two independent beams, one is a shear beam and the other is a #exural beam, with the same
boundary conditions as those of the #exural-shear plate.

The general solution of equation (15) is easy to "nd as

X(x)"D
1

sin
X

a
2

x#D
2

cos
X

a
z

x (18)

where

a
2
"S

K
2

mN
. (19)
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The frequency equation and mode shape in the x direction can be determined by the use of
equation (18) and the boundary conditions in the x direction of the #exural-shear plate are
as follows:

1. A -exural-shear plate with free-free (F}F) edges in the x direction. In general, the
boundary conditions in the longitudinal direction of a narrow building belong to this
case, which can be written as

dX(x)

dx
"0 at x"0 and x"¸. (20)

Using equations (20) and (18) one obtains

X
k
"

a
2
(k!1)n

¸

, k"1, 2 ,2 (21)

X
k
(x)"sin

knx

¸

. (22)

2. A -exural-shear plate with clamped}clamped (C}C) edges or simply supported edges in
the x direction. The boundary conditions for this case are

X (x)"0 at x"0 and ¸. (23)

Using equations (23) and (18) leads to

X
k
"

a
2
kn
¸

, k"1, 2,2 (24a)

X
k
(x)"sin

knx

¸

. (24b)

3. A -exural-shear plate with clamped}spring (C}S) edges and a line mass is attached to the
spring edge. If the edge at x"0 is clamped, then the boundary conditions, X(0)"0, is
substituted into equation (18), leading to

D
2
"0.

Since the edge at x"¸ is a spring-supported one with line mass, the boundary
condition at this edge is

X@(¸)"!(a
uL
!b

mL
X2 )X(¸), (25)

where

X@(¸)"
dX(x)

dx K
x/L

, a
uL
"

K
uL

K
2

, b
mL

"

m
L

K
2

. (26)

K
uL

and m
L

are the spring sti!ness and line mass intensity (mass per unit length)
attached to the plate at edge x"¸, respectively.
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Using equations (26) and (18) one obtains the frequency equation as

tan
X

a
2

¸"!

X

a
2
(a

uL
!b

mL
X2)

. (27)

The kth mode shape in the x direction can be written as

X
k
(x)"sin

X
k
x

a
2

(28)

in which X
k
is the kth circular natural frequency of the shear beam.

4. A -exural-shear plate with spring}spring (S}S) edges and line masses in the
x direction. If the opposite edges in the x direction of a #exural-shear plate are spring-
supported ones with line masses, then the boundary conditions can be written as

X@(0)"(a
u0
!b

m0
X2)X (0), a

u0
"

K
u0

K
2

, b
m0

"

m
0

K
2

, (29)

X@(¸)"!(a
uL
!b

mL
X2)X(¸), (30)

where K
u0

and m
0

are the spring sti!ness and line mass intensity attached to the edge
at x"0. Using equations (29), (30) and (18) one obtains the frequency equation of the
shear beam as follows:

X

a
2

tan
X¸

a
2

#(a
uL
!b

mL
X2)#(a

u0
!b

m0
X2) C1#

a
2
(a

uL
!b

mL
X2)

X
tan

X¸

a
2
D"0. (31)

Solving this equation one obtains a set of X
k

(k"1, 2,2). Substituting X
k

into
equation (21) one obtains the kth mode shape of the shear beam in the x direction.

It is necessary to point out that equations (21), (24) and (27) can be directly obtained
from equation (31) by letting a

u0
"0, a

ul
"0 and a

u0
PR, a

ul
PR as well as a

u0
PR

respectively.
The general solution of equation (16) is dependent on the expressions of K

y
, N

y
and

mN
xy

. Obviously, it is only possible to get the general solution of equation (16) for
several special cases which will be investigated as follows.

Case 1: The functions for describing the distributions of the #exural sti!ness, axial force
and mass intensity are power functions

K
y
"K

1
(1#by)n`2, N

y
"N (1#by)n`1, mN

xy
"mN (1#by)n, (32)

Substituting equation (32) into equation (16) and assuming that

> (y)"tnJ
n
(t), (33a)

t"j J1#by, (33b)
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one obtains

K
1 A

jb
2 B

4
#N A

jb
2 B

2
!mN h2"0. (34)

Solving equation (34) for j gives

j
1
"

2

b
JZ

1
, j

2
"

2

b
JZ

2
,

(35)
j
3
"!j

1
, j

4
"!j

2
,

where

Z
1
"N

e
#JN2

e
#h2

e
,

Z
2
"N

e
!JN2

e
#h2

e
, (36)

N
e
"

N

2K
1

, h
e
"

mN h2

K
1

.

It can be seen from equation (36) that Z
1
'0 and Z

2
(0; thus, j

1
and j

3
are real roots, and

j
2

and j
4

are pure imaginary roots.
The general solution of equation (16) for Case 1 can be written as

> (y)"C
1
t~n
1

J
n
(t
1
)#C

2
t~n
1

J
~n

(t
1
)#C

3
t~n
2

I
n
(t
n
)#C

4
t~n
2

I
~n

(t
2
), n"a non-integer

(37)

or

> (y)"C
1
t~n
1

J
n
(t
1
)#C

2
t~n
1

Y
n
(t
1
)#C

3
t~n
2

I
n
(t
2
)#C

4
t~n
2

K
n
(t
2
), n"an integer, (38)

where J
n
( ) ), Y

n
( ) ), I

n
( ) ) and K

n
( ) ) are Bessel functions of the "rst, second, third and fourth

kinds, respectively; t
1

and t
2

can be determined by substituting j
1

and j
2

into
equation (33b).

Case 2: The functions for describing the distributions of the #exural sti!ness, axial force
and mass intensity are expressed as

K
y
"K

1
(1#by)n`4, N

y
"N(1#by)n`2, mN

xy
"mN (1#by)n. (39)

Substituting equation (39) into equation (16) leads to an Euler's equation, the general
solution of which can be written as

>(y)"C
1

exp(r
1
g)#C

2
exp(r

2
g)#C

3
exp(r

3
g)#C

4
exp(r

4
g) (40)
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where

g"ln(1#by),

r
1,2

"!

n#1

2
$S

(n#1)2

4
#h

f
!N

f
,

r
3,4

"

n#1

2
$S

(n#1)2

4
!h

f
!N

f
,

N
f
"

1

2
(N

d
!n!2), (41)

h
f
"Jh2

d
#N2

f
,

N
d
"

N

b2K
1

, h
d
"

mN h2

b4K
1

.

Since h
f
*N

f
, r

1
and r

2
are real roots. If r

3
and r

4
are complex values, then

>(y)"C
1

exp(r
1
g)#C

2
exp(r

2
g)#exp A!

n#1

2
gB (D

3
cos uy#D

4
sin uy), (42)

where

u2"h
f
#N

f
!

(n#1)2

4
. (43)

Case 3: The distributions of #exural sti!ness, axial force and mass intensity are given by

K
y
"K

1
exp(!by), N

y
"N exp(!by), mN

xy
"mN exp(!by). (44)

Substituting equation (44) into equation (16) one obtains a di!erential equation with
constant coe$cients its general solution is

>(y)"exp A
by

2 B CC1
exp AS

b2

4
!Z

2
yB#C

2
expA!S

b2

4
!Z

2
yB

#C
3

cosASZ
1
!

b2

4
yB#C

4
sin ASZ

1
!

b2

4
yBD (45)

where Z
1

and Z
2

are given by equation (36).
Case 4: The distribution of #exural sti!ness axial force and mass intensity are uniform,

i.e.,

K
y
"K

1
, N

y
"N, mN

xy
"mN . (46)
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Equation (16) for this case becomes a di!erential equation with constant coe$cients; its
general solution is easily found as

>(y)"C
1

sin a
1
y#C

2
cos a

1
y#C

3
sinh a

2
y#C

4
cosh a

2
y (47)

where

a
1,2

"fSS1#A
e
fB

4
$1,

(48)

f"
N

2K
1

, e4"
mN h2

K
1

,

The general solution for all the cases discussed above can be expressed in a uni"ed form as
follows:

>(y)"C
1
S
1
(y)#C

2
S
2
(y)#C

3
S
3
(y)#C

4
S
4
(y), (49)

where S
i
(y) (i"1}4) are four independent solutions of equation (16), which can be found

from equations (37), (38), (40), (45) and (47) for one of the four cases discussed previously.
In order to conveniently establish the frequency equation for the title problem, by using

S
i
(y) (i"1}4), we construct the following four linearly independent fundamental solutions

SM
i
(y) (i"1}4) as

C
SM
1
(y)

SM
2
(y)

SM
3
(y)

SM
4
(y)D"C

S
1
(0) S@

1
(0) SA

1
(0) S@A

1
(0)

S
2
(0) S@

2
(0) SA

2
(0) S@A

2
(0)

S
3
(0) S@

3
(0) SA

3
(0) S@A

3
(0)

S
4
(0) S@

4
(0) SA

4
(0) S@A

4
(0)D

~1

C
S
1
(y)

S
2
(y)

S
3
(y)

S
4
(y)D . (50)

Obviously, SM
1
(y) (i"1}4) satisfy the following normalization condition at the origin of

co-ordinate system:

C
SM
1
(0) SM @

1
(0) SM A

1
(0) SM @A

1
(0)

SM
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The advantage of using the fundamental solutions, SM
i
(y), is that the mode shape functions in

the y direction can be easily expressed by initial parameters as follows:

> (y)"> (0)SM
1
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2
(y)!
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3
(y)!

1
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(0)

[Q
y
(0)#N

y
(0)u(0)!k (0)M

y
(0)]SM

4
(y), (52)

where

k (y)"
K@

y
(y)

K
y
(y)

.
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>(0), u (0), M
y
(0) and Q

y
(0) are initial displacement, slope, bending moment and shear force

in the y direction at y"0 respectively. Because two of the four initial parameters are known
for any type of support conditions, it is easy to establish the frequency equation of the
#exural-shear plate in the y direction by use of the fundamental functions. Free vibration of
a #exural-shear plate with classical and non-classical boundary conditions is discussed as
follows.

1. A -exural-shear plate with F}F edges in the y direction. The boundary conditions for
this case are given by

M
y
(0)"0, Q

y
(0)"0, M

y
(H)"0, Q

y
(H)"0. (53)

It can be seen from the above equation that two of the four parameters at the edges y"0
and y"H are known. By using the boundary conditions at y"0, we obtain

>(y)">(0)SM
1
(y)#u (0)[SM

2
(y)!N

K
(0)SM

4
(y)] (54)

where

N
K
(y)"

N
y
(y)

K
y
(y)

. (55)

2. A -exural-shear plate with C}C edges in the y direction. The boundary conditions can
be written as

>(0)"0, u(0)"0, >(H)"0, u(H)"0. (56)

By using the boundary conditions at y"0 and equation (52) we obtain

>(y)"[SM
3
(y)#k (0)SM

4
(y)]M

y
(0)#SM

4
(y)Q

y
(0). (57)

Then, using the boundary conditions at y"H gives the frequency equation as

SM @
4
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3
(H)#k (0)SM

4
(H)]!SM

4
(H)[SM @

3
(H)#k (0)SM @

4
(H)]"0. (58)

3. A -exural-shear plate with hinged}hinged (H}H) edges in the y direction. The boundary
conditions are given by

>(0)"0, M
y
(0)"0, >(H)"0, M

y
(H)"0. (59)

The boundary conditions at y"0 are substituted into equation (52), leading to

> (y)"[SM
2
(y)!N

K
(0)SM

4
(y)]u(0)!

1

K
y
(0)

SM
4
(y)Q

y
(0)"0. (60)

The frequency equation can be established by the use of equation (60) and the boundary
conditions at y"H as follows:
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2
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4
(H) [SM @@

2
(H)!N

K
(0)SM A

4
(H)]"0. (61)
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4. A -exural-shear plate with C}F edges in the y direction. If the edge at y"0 is free,>(y)
is given by equation (54). The frequency equation can be established by using the boundary
conditions at y"H,

> (H)"0, u (H)"0 (62)

as follows:
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5. A -exural-shear plate with S}F edges in the y direction. If the edge at y"0 is free, then
>(y) is given by equation (54). If translational spring and rotational spring supports with
a line mass are attached to the edge at y"H, then the boundary conditions can be written
as

M
y
(H)"KuH

u (H),
(64)

Q
y
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!m
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or

K
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(65)
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, b
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"

m
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K
y
(H)

. (66)

KuH
, K

yH
, m

yH
are the rotational spring sti!ness, translational spring sti!ness and line mass

intensity attached to the edge at y"H respectively.
The frequency equation can be determined from equations (54) and (65) as follows:
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6. A -exural-shear plate with S}S edges in the y direction. If translational spring and
rotational spring supports with a line mass are attached to the edge at y"0 and the
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support conditions at the edge y"H are the same as those at the edge y"0, then the
boundary conditions can be written as
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where Ku0 , Ky0
, m

y0
, are the rotational spring sti!ness, translational spring sti!ness and line

mass intensity attached to the edge at y"0. KuH , K
yH

, m
yH

are the rotational spring
sti!ness, translational spring sti!ness and line mass intensity attached to the edge at y"H.

The boundary conditions at y"0 are substituted into equation (52), leading to
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The frequency equation can be determined from equation (71) and the boundary conditions
at y"H as follows:
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7. A -exural-shear plate with line masses, line translational spring and rotational spring
supports at the (q!1) intermediate lines (Figure 3). It is assumed that the #exural sti!ness,
mass intensity and axial force are described by continuous functions denoted by K

y
(y),

mN
xy

(y), N
y
(y). The sti!ness of the jth line translational spring and that of rotational spring



Figure 3. A #exural-shear plate with line masses, line spring at the (q!1) intermediate lines.
(Note: the line masses and rotational springs are not shown in Figure 3.)
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and the jth line mass intensity are denoted by K
j
, Kuj and m

j
respectively, the fundamental

solutions for this case are SM
1
(y), SM

2
(y), SM

3
(y) and SM

4
(y).

The mode shape, >
1
(y), of the "rst segment, y3[0, l

1
], is dependent on the boundary

conditions at y"0; the mode shape, >
i
(y), of the ith segment can be written as
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where H( ) ) is Heaviside function.
The frequency equation can be determined by the use of >

q
(y) and the boundary

conditions at y"l
q
.

3. NUMERICAL EXAMPLE

Figure 4 shows a sketch of a 20-story building with narrow rectangular plane; the main
structures of the building are shear walls. Based on the "eld measurement of vibration of
this building [4], it can be treated as a #exural-shear plate for free vibration analysis. The
building foundation is treated as translational springs and rotational springs attached to
the building base. The procedure for determining the natural frequencies and mode shapes
of this narrow building is as follows.

1. Determination of the mass intensity of the -exural-shear plate. The mass intensity (mass
per unit area) of the #exural-shear plate, which represents the building considered, varies in
echelon along the building height (Figure 5).

The distributions of mass in di!erent stories are found as

m
1
"6)146]105 kg,

m
2
"m

3
"m

4
"m

5
"4)612]105 kg,



Figure 4. A narrow building: (a) perspective drawing, (b) plane, (c) a transverse shear}wall.

Figure 5. The distribution of mass intensity.
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15
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m
16
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19
"m

20
"4)630]105 kg.
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The height of the "rst story is 4 m, and the height of the other #oors is 3 m; so, the
equivalent mass for 3 m height of the "rst story is

6)146]105]3
4
"4)610]105 kg.
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It can be seen from the above results that the mass distribution from the "rst story to the
"fth story is almost uniform, the mass intensity of the plate in this story range is

mN
1
"

4)612]105

3]5]12
"2)562]103 kg/m2.

From the sixth story to the 10 story,

mN
2
"

4)644]105

3]5]12
"2)580]103 kg/m2.

From the 11th story to the 15th story,

mN
3
"

4)626]105

3]5]12
"2)570]103 kg/m2.

From the 16th story to the 20th story,

mN
4
"

4)635]105

3]5]12
"2)575]103 kg/m2.

The values of the mass intensity of the four-step plate divided above are shown in Figure 5.
It can be seen from the above results that the variation of the mass intensity of the plate is
relatively small; thus, it is reasonable to assume mN as a constant, i.e., mN "2)572]103 kg/m2.

2. Evaluation of the -exural sti+ness K
y
(y). The distribution of shear walls along the

longitudinal direction of the building is uniform and the cross-sectional dimensions of the
shear wall vary in echelon along the building height. The total #exural sti!ness of the shear
walls from the "rst story to the "fth story is found as

EI
1
"25)6194]1012 N m2.

The #exural sti!ness of the plate in this story range is the value of EI
1

divided by the length
of the building:

K
1y
"

25)6194]1012

5]12
"4)2699]1011 N m.

The #exural sti!ness of the plate from the sixth story to the 10th story is found as

K
2y
"3)7126]1011 Nm.

From the 11th story to the 15th story,

K
3y
"3)3806]1011 Nm.

From the 16th story to the 20th story,

K
4y
"2)9105]1011 N m
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In order to use the method proposed in this paper to analyze free vibration of the narrow
building, the four-step distribution of the #exural sti!ness is treated as a continuous one
given by

K
y
"2)9105(1#by)2]1011,

(76)
b"3)4627]10~3.

A comparison between the distribution of the #exural sti!ness estimated by equation (76)
and the real one is given in Figure 6.

3. Evaluation of the shear sti+ness K
x
. The shear sti!ness of all the #oors is

GF"3)8718]1010 N.

The shear sti!ness of the plate is thus a constant that is equal to the value of GF divided by
the story height,

K
x
"K

2
"

3)8718]1010

3
"1)2906]1010 N/m

4. Evaluation of sti+ness for the elastic foundation. It is assumed that the elastic
foundation is treated as translational springs and rotational springs attached to the
building base, as shown in Figure 4(c), which are found as

K
yH

"4)9105]1010 N/m2,

KuH
"9)7038]1010 N.

5. Evaluation of axial forces. Since the distribution of mass intensity of the plate is
uniform, the distribution of axial force is described by a linear function as

N
y
"N

0
(1#by). (77)
Figure 6. The distribution of #exural sti!ness.
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In order to use the method proposed in this paper, b must be equal to the same value as that
given in equation (76). N

0
is determined from

N
0
"P

H

0

(mN g!bN
0
) A1!

y

HB
2

dy"4)8857]105 N. (78)

6. Determination of the natural frequencies in the x direction. Since the plate, which
represents the 20-storey building considered, has F}F edges in the x direction X

K
is given by

equation (21), i.e.,

X
K
"

2240.0636(k!1)n
60

.

Letting k"1, 2, 3, one obtains X
1
"0, X

2
"117.2897, X

3
"234.5794.

7. Determination of the natural frequencies in the y direction. The boundary conditions of
the plate in the y direction can be written as

M
y
(0)"0,

Q
y
(0)"0,

M
y
(H)"KuH

u(H), (79)

Q
y
(H )"!K

yH
> (H).

The frequency equation is the same as equation (67) for this case, but b
yH

"0. Solving the
frequency equation one obtains

h
1
"8)4531, h

2
"58)4112, h

3
"169)0273.

If the e!ect of rotation of the foundation on the natural frequencies is not considered, then

h
1
"8)5176, h

2
"85)9241, h

3
"169)9872.

If the e!ects of rotation of the foundation and the foundation elasticity on the natural
frequencies are not considered, then

h
1
"8)5986, h

2
"58)9972, h

3
"170)2991.

If the e!ects of the foundation elasticity and the axial forces are not considered, then

h
1
"8)6203, h

2
"59)0437, h

3
"170)3218.

It can be seen from the above results that the foundation of this building can be treated as
clamped end support, and the e!ect of the axial forces can be ignored.

8. Determination of the natural frequencies of the plate. After h
j
and X

k
are found, the

circular natural frequency, u
jk

, of the plate is given by

u
jk
"Jh2

j
#X2

k
,



TABLE 1

¹he circular natural frequencies of the narrow building

u
11

u
21

u
12

u
22

u
31

u
32

u
13

u
23

u
33

8)6203 59)0437 117)6061 131)3127 170)3218 206)8004 234)7377 241)8962 289)8916
[8)6209] [59)0441] [117)6073] [131)3152] [170)3821] [206)8973] [234)8792] [241)9104] [289)9984]
(8)63) (59)21) (117)69) (131)73) (170)95)

Note: The data in square brackets are the values calculated by using the uniform four-step model, and the resutls
in parentheses are the measured data.
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where u
jk

corresponds to the jth mode shape in the y direction and the kth mode shape in
the x direction.

The calculated values of u
jk

are listed in Table 1.
The values of u

k
obtained by using the uniform four-step model shown in Figures 5 and

6 based on the calculation method proposed by Li et al. [12] and the measured values of
u

jk
[4] are presented in Table 1 for comparison purposes.

9. Determination of mode shapes. X
k
(x) (k"1, 2, 3,2) are given in equation (25). >

j
(y)

can be determined from equation (54) and the boundary conditions. Since the e!ects of the
axial forces and the elasticity of the foundation can be ignored, the plate has C}F edges in
the y direction, i.e., we have

M
y
"0, Q

y
(0)"0,

(80)
>(H)"0, u (H)"0.

Using equations (54), (80) and the calculated value of h
j
one obtains >

j
(y) as listed in Table

2. The values of >
j
(y) determined by using the uniform four-step model and from the "eld

measurement [4] are also listed in Table 2 for comparison purposes.
It can be seen from Tables 1 and 2 that the calculated results are almost the same as those

obtained based on the uniform four-step model. This illustrates that a non-uniform
#exural-shear plate can be treated as a uniform multi-step #exural-shear plate for free
vibration analysis and vice versa. It is also shown that all the calculated results are in good
agreement with the measured data, suggesting that the proposed methods in this paper are
applicable to engineering application.

4. CONCLUSIONS

An analytical procedure for determining natural frequencies and mode shapes of non-
uniform #exural-shear plates with line translational spring and rotational spring supports
and line masses under the action of axial forces has been proposed in this paper. It is shown
that a #exural-shear plate is a special orthotropic plate that can be simpli"ed as two beams
for free vibration analysis. One is a shear beam, the other is a #exural beam. The natural
frequency of the #exural-shear plate is equal to the square root of the square sum of the two
natural frequencies of the two beams; the mode shape of the plate is the product of the
corresponding two mode shapes of the two beams. Thus, the analytical procedure for free
vibration of a non-uniform #exural-shear plate can be greately simpli"ed. By selecting
suitable functions, such as power functions and exponential functions, for describing the



TABLE 2

¹he mode shapes in y direction

Story
no. 0 2 4 6 8 10 12 14 16 18 20

>
1
(y) 0 0)018 0)056 0)139 0)230 0)336 0)459 0)580 0)723 0)861 1)00

[0] [0)018] [0)056] [0)138] [0)230] [0)337] [0)459] [0)581] [0)724] [0)862] [1)0]
(0) (0)020) (0)057) (0)139) (0)230) (0)338) (0)460) (0)582) (0)724) (0)863) (1)0)

>
2
(y) 0 0)092 0)295 0)514 0)684 0)701 0)583 0)317 !0)164 !0)349 !1)0

[0] [0)092] [0)295] [0)515] [0)685] [0)701] [0)583] [0)318] [!0)165] [!0)350] [!1)0]
(0) (0)093) (0)296) (0)514) (0)686) (0)701) (0)584) (0)319) (!0)165) (!0)350) (!1)0)

>
3
(y) 0 0)227 0)606 0)757 0)526 0)181 !0)473 !0)660 !0)399 0)302 1)0

[0] [0)227] [0)606] [0)756] [0)527] [0)180] [!0)473] [!0)661] [!0)398] [0)303] [1)0]
(0) (0)229) (0)607) (0)758) (0)528) (0)180) (!0)433) (0)662) (!0)399) (0)304) (1)0)

Note: The data in square brackets are the values calculated by using the uniform four-step model, and the results in parentheses are the measured data.
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distributions of mass, #exural sti!ness and axial forces, the exact solutions for the title
problem for four cases that are important in engineering practices are derived. The
numerical example shows that the selected expressions are suitable for describing the
distributions of mass, sti!ness and axial forces for typical multi-story narrow buildings with
shear-wall structures. In fact, the four linearly independent fundamental solutions
developed in this paper and satisfying the normalization condition can be easily
constructed. The advantage of using the fundamental solutions is that the mode shape
functions can be expressed by initial parameters and the frequency equation for the title
problem can be conveniently established. In order to extend practical applications of the
methods proposed in this paper, free vibrations of #exural-shear plates with various
boundary conditions, including classical and non-classical ones, are investigated. The
numerical example demonstrates that the e!ects of elastic foundation and axial forces on
structural dynamic characteristics of common tall buildings (about 20 stories) are not
signi"cant, and it is possible to regard a multi-step #exural-shear plate as a one-step plate
with continuously varying cross-section for free vibration analysis. It is also shown through
the numerical example that the calculated results are in good agreement with the
experimental data and the proposed procedure is an e$cient method.
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